Refine Your Search

Topic

Author

Search Results

Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
Technical Paper

Strategies for the Control of Particulate Trap Regeneration

2000-03-06
2000-01-0472
The reduction of particulate emissions from Diesel engines is a key issue to meet future emission standards. Particulate traps represent an attractive solution to the problem of this source of pollution. However, they have the disadvantage of requiring periodic and safe regeneration to release exhaust back pressure and to recover filtration efficiency. Natural regeneration of the particulate filter may occur. Nevertheless, with light-duty vehicles and their low level of exhaust gas temperature, it may be necessary to facilitate or force the regeneration. The objective of this work is to give an overview of the possibilities offered by the engine management system to increase significantly exhaust gas temperatures. Thus, different engine tunes, through injection timing, boost pressure or EGR rate, may be sufficient to ensure safe regeneration of the trap.
X